题目内容

16.设a,b,c,d是正数,且a+b+c+d=4,证明:$\frac{{a}^{2}}{b}$+$\frac{{b}^{2}}{c}$+$\frac{{c}^{2}}{d}$+$\frac{{d}^{2}}{a}$≥4+(a-b)2

分析 通过柯西不等式可知$\frac{{b}^{2}}{c}$+$\frac{{c}^{2}}{d}$+$\frac{{d}^{2}}{a}$≥$\frac{(b+c+d)^{2}}{c+d+a}$,利用a+b+c+d=4整理、拼凑可知$\frac{{a}^{2}}{b}$+$\frac{{b}^{2}}{c}$+$\frac{{c}^{2}}{d}$+$\frac{{d}^{2}}{a}$≥4+$\frac{4(a-b)^{2}}{b(4-b)}$,利用$\frac{4}{b(4-b)}$≥1整理即得结论.

解答 证明:$\frac{{a}^{2}}{b}$+$\frac{{b}^{2}}{c}$+$\frac{{c}^{2}}{d}$+$\frac{{d}^{2}}{a}$=$\frac{{a}^{2}}{b}$+($\frac{{b}^{2}}{c}$+$\frac{{c}^{2}}{d}$+$\frac{{d}^{2}}{a}$)
≥$\frac{{a}^{2}}{b}$+$\frac{(b+c+d)^{2}}{c+d+a}$(柯西不等式)
=$\frac{{a}^{2}}{b}$+$\frac{(4-a)^{2}}{4-b}$
=$\frac{(4-b){a}^{2}+b(4-a)^{2}}{b(4-b)}$
=$\frac{(16b-4{b}^{2})+(4{a}^{2}-8ab+4{b}^{2})}{b(4-b)}$
=4+$\frac{4(a-b)^{2}}{b(4-b)}$,
∵(b-2)2≥0,
∴$\frac{4}{b(4-b)}$≥1,
∴$\frac{4(a-b)^{2}}{b(4-b)}$≥(a-b)2
∴$\frac{{a}^{2}}{b}$+$\frac{{b}^{2}}{c}$+$\frac{{c}^{2}}{d}$+$\frac{{d}^{2}}{a}$≥4+(a-b)2

点评 本题考查不等式的证明,利用柯西不等式是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网