题目内容
已知函数f(x)=ln x-
.
(1)当a>0时,判断f(x)在定义域上的单调性;
(2)f(x)在[1,e]上的最小值为
,求实数a的值;
(3)试求实数a的取值范围,使得在区间(1,+∞)上函数y=x2的图象恒在函数y=f(x)图象的上方.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050530167383.png)
(1)当a>0时,判断f(x)在定义域上的单调性;
(2)f(x)在[1,e]上的最小值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050530183388.png)
(3)试求实数a的取值范围,使得在区间(1,+∞)上函数y=x2的图象恒在函数y=f(x)图象的上方.
(1)f(x)在(0,+∞)上是单调递增函数
(2)a=-
(3)a≥-1
(2)a=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050530198329.png)
(1)f′(x)=
+
=
(x>0),
当a>0时,f′(x)>0恒成立,
故f(x)在(0,+∞)上是单调递增函数.
(2)由f′(x)=0得x=-a,
①当a≥-1时,f′(x)≥0在[1,e]上恒成立,f(x)在[1,e]上为增函数.
f(x)min=f(1)=-a=
得a=-
(舍).
②当a≤-e时,f′(x)≤0在[1,e]上恒成立,f(x)在[1,e]上为减函数.
则f(x)min=f(e)=1-
=
得a=-
(舍).
③当-e<a<-1时,由f′(x)=0得x0=-a.
当1<x<x0时,f′(x)<0,f(x)在(1,x0)上为减函数;
当x0<x<e时,f′(x)>0,f(x)在(x0,e)上为增函数.
∴f(x)min=f(-a)=ln(-a)+1=
,得a=-
.
综上知:a=-
.
(3)由题意得:x2>ln x-
在(1,+∞)上恒成立,
即a>xln x-x3在(1,+∞)上恒成立.
设g(x)=xln x-x3(x>1),则
g′(x)=ln x-3x2+1.
令h(x)=ln x-3x2+1,则
h′(x)=
-6x.
当x>1时,h′(x)<0恒成立.
∴h(x)=g′(x)=ln x-3x2+1在(1,+∞)上为减函数,
则g′(x)<g′(1)=-2<0.
所以g(x)在(1,+∞)上为减函数,
∴g(x)<g(1)<-1,故a≥-1
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050530214314.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050530230454.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050530261513.png)
当a>0时,f′(x)>0恒成立,
故f(x)在(0,+∞)上是单调递增函数.
(2)由f′(x)=0得x=-a,
①当a≥-1时,f′(x)≥0在[1,e]上恒成立,f(x)在[1,e]上为增函数.
f(x)min=f(1)=-a=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050530183388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050530183388.png)
②当a≤-e时,f′(x)≤0在[1,e]上恒成立,f(x)在[1,e]上为减函数.
则f(x)min=f(e)=1-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050530308373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050530183388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050530339389.png)
③当-e<a<-1时,由f′(x)=0得x0=-a.
当1<x<x0时,f′(x)<0,f(x)在(1,x0)上为减函数;
当x0<x<e时,f′(x)>0,f(x)在(x0,e)上为增函数.
∴f(x)min=f(-a)=ln(-a)+1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050530183388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050530198329.png)
综上知:a=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050530198329.png)
(3)由题意得:x2>ln x-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050530167383.png)
即a>xln x-x3在(1,+∞)上恒成立.
设g(x)=xln x-x3(x>1),则
g′(x)=ln x-3x2+1.
令h(x)=ln x-3x2+1,则
h′(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050530214314.png)
当x>1时,h′(x)<0恒成立.
∴h(x)=g′(x)=ln x-3x2+1在(1,+∞)上为减函数,
则g′(x)<g′(1)=-2<0.
所以g(x)在(1,+∞)上为减函数,
∴g(x)<g(1)<-1,故a≥-1
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目