题目内容

【题目】设已知函数f(x)=|lnx|,正数a,b满足a<b,且f(a)=f(b),若f(x)在区间[a2 , b]上的最大值为2,则2a+b=

【答案】 +e
【解析】解:由对数函数的性质知
∵f(x)=|lnx|正实数a、b满足a<b,且f(a)=f(b),
∴0<a<1<b,以及ab=1,
又函数在区间[a2 , b]上的最大值为2,由于f(a)=f(b),f(a2)=2f(a)
故可得f(a2)=2,即|lna2|=2,即lna2=﹣2,即a2= ,可得a= ,b=e
则2a+b= +e,
所以答案是: +e.
【考点精析】掌握函数的最值及其几何意义是解答本题的根本,需要知道利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网