题目内容
已知函数f(x)的导函数为f ′(x),且对任意x>0,都有f ′(x)>
.
(Ⅰ)判断函数F(x)=
在(0,+∞)上的单调性;
(Ⅱ)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853538552.png)
(Ⅰ)判断函数F(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853538552.png)
(Ⅱ)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.
(Ⅰ)F(x)=
在(0,+∞)上是增函数;(Ⅱ)f(x1)+f(x2)<f(x1+x2);(Ⅲ)f(x1)+f(x2)+…+f(xn)<f(x1+x2+…+xn).
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853538552.png)
试题分析:(Ⅰ)判断F(x)的单调性,则需对F(x)求导,得F′(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853585810.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853538552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853538552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853538552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853648599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853663758.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853679486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853679501.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853538552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853648599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853726961.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853741652.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853757667.png)
f(xn)<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853772676.png)
试题解析:(Ⅰ)对F(x)求导数,得F′(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853585810.png)
∵f ′(x)>
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853538552.png)
∴F′(x)>0.
故F(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853538552.png)
(Ⅱ)∵x1>0,x2>0,∴0<x1<x1+x2.
由(Ⅰ),知F(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853538552.png)
∴F(x1)<F(x1+x2),即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853648599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853663758.png)
∵x1>0,∴f(x1)<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853679486.png)
同理可得f(x2)<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853679501.png)
以上两式相加,得f(x1)+f(x2)<f(x1+x2).
(Ⅲ)(Ⅱ)中结论的推广形式为:
设x1,x2,…,xn∈(0,+∞),其中n≥2,则f(x1)+f(x2)+…+f(xn)<f(x1+x2+…+xn).
∵x1>0,x2>0,…,xn>0,
∴0<x1<x1+x2+…+xn.
由(Ⅰ),知F(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853538552.png)
∴F(x1)<F(x1+x2+…+xn),即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853648599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853726961.png)
∵x1>0,
∴f(x1)<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853741652.png)
同理可得
f(x2)<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853757667.png)
f(x3)<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853960693.png)
……
f(xn)<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024853772676.png)
以上n个不等式相加,得f(x1)+f(x2)+…+f(xn)<f(x1+x2+…+xn).
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目