ÌâÄ¿ÄÚÈÝ
15£®¶¨ÒåÐÐÁÐʽÔËË㣺$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3£®Èô½«º¯Êýf£¨x£©=$|\begin{array}{l}{sinx}&{cosx}\\{\sqrt{3}}&{1}\end{array}|$µÄͼÏóÏò×óƽÒÆm£¨m£¾0£©¸öµ¥Î»ºó£¬ËùµÃͼÏó¶ÔÓ¦µÄº¯ÊýΪÆ溯Êý£¬ÔòmµÄ×îСֵÊÇ£¨¡¡¡¡£©A£® | $\frac{2¦Ð}{3}$ | B£® | $\frac{¦Ð}{6}$ | C£® | $\frac{5}{6}$¦Ð | D£® | $\frac{¦Ð}{3}$ |
·ÖÎö ÓÉÒÑÖªÀûÓöþ½×ÐÐÁÐʽµÄÕ¹¿ªÊ½·¨Ôò¼°º¯ÊýƽÒƵÄÐÔÖʵõ½y=2sin£¨x+m-$\frac{¦Ð}{3}$£©ÊÇÆ溯Êý£¬´Ó¶øm-$\frac{¦Ð}{3}$=k¦Ð£¬k¡ÊZ£¬ÓÉ´ËÄÜÇó³ömµÄ×îСֵ£®
½â´ð ½â£º¡ßº¯Êýf£¨x£©=$|\begin{array}{l}{sinx}&{cosx}\\{\sqrt{3}}&{1}\end{array}|$=sinx-$\sqrt{3}$cosx=2sin£¨x-$\frac{¦Ð}{3}$£©£¬
º¯Êýf£¨x£©=$|\begin{array}{l}{sinx}&{cosx}\\{\sqrt{3}}&{1}\end{array}|$µÄͼÏóÏò×óƽÒÆm£¨m£¾0£©¸öµ¥Î»ºó£¬ËùµÃͼÏó¶ÔÓ¦µÄº¯ÊýΪÆ溯Êý£¬
¡ày=2sin£¨x+m-$\frac{¦Ð}{3}$£©ÊÇÆ溯Êý£¬¡àm-$\frac{¦Ð}{3}$=k¦Ð£¬k¡ÊZ£¬
¡ßm£¾0£¬¡àmµÄ×îСֵÊÇ$\frac{¦Ð}{3}$£®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ì⿼²éʵÊýµÄ×îСֵµÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¶þ½×ÐÐÁÐʽµÄÕ¹¿ªÊ½·¨Ôò¼°º¯ÊýƽÒƵÄÐÔÖʼ°Èý½Çº¯ÊýÐÔÖʵĺÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
5£®ÒÑÖªº¯Êýf£¨x£©ÊÇżº¯Êý£¬ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÔòÏÂÁв»µÈʽ³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£® | f£¨-3£©£¼f£¨-1£©£¼f£¨2£© | B£® | f£¨-1£©£¼f£¨2£©£¼f£¨-3£© | C£® | f£¨2£©£¼f£¨-3£©£¼f£¨-1£© | D£® | f£¨2£©£¼f£¨-1£©£¼f£¨-3£© |
7£®¶¨ÒåÔÚ£¨-¡Þ£¬0£©¡È£¨0£¬+¡Þ£©Éϵĺ¯Êýf£¨x£©£¬Èç¹û¶ÔÓÚÈÎÒâ¸ø¶¨µÄµÈ±ÈÊýÁÐ{an}£¬{f£¨an£©}£¬ÈÔÊǵȱÈÊýÁУ¬Ôò³Æf£¨x£©Îª¡°µÈ±Èº¯Êý¡±£®ÏÖÓж¨ÒåÔÚ£¨-¡Þ£©£¬0£©¡È£¨0£¬+¡Þ£©ÉϵÄÈçϺ¯Êý£º
¢Ùf£¨x£©=3x£¬
¢Úf£¨x£©=$\frac{2}{x}$£¬
¢Ûf£¨x£©=x3£¬
¢Üf£¨x£©=log2|x|£¬
ÔòÆäÖÐÊÇ¡°µÈ±Èº¯Êý¡±µÄf£¨x£©µÄÐòºÅΪ£¨¡¡¡¡£©
¢Ùf£¨x£©=3x£¬
¢Úf£¨x£©=$\frac{2}{x}$£¬
¢Ûf£¨x£©=x3£¬
¢Üf£¨x£©=log2|x|£¬
ÔòÆäÖÐÊÇ¡°µÈ±Èº¯Êý¡±µÄf£¨x£©µÄÐòºÅΪ£¨¡¡¡¡£©
A£® | ¢Ù¢Ú¢Û¢Ü | B£® | ¢Ù¢Ü | C£® | ¢Ù¢Ú¢Ü | D£® | ¢Ú¢Û |