题目内容

【题目】已知圆C经过两点,且圆心在直线上.

(1)求圆C的方程;

(2)若直线经过点且与圆C相切,求直线的方程.

【答案】(1);(2)

【解析】

试题(1)根据圆心在弦的垂直平分线上,先求出弦的垂直平分线的方程与联立可求得圆心坐标,再用两点间的距离公式求得半径,进而求得圆的方程;(2)当直线斜率不存在时,与圆相切,方程为;当直线斜率存在时,设斜率为,写出其点斜式方程,利用圆心到直线的距离等于半径建立方程求解出的值.

试题解析:(1)依题意知线段的中点坐标是,直线的斜率为

故线段的中垂线方程是

解方程组,即圆心的坐标为

的半径,故圆的方程是

(2)若直线斜率不存在,则直线方程是,与圆相离,不合题意;若直线斜率存在,可设直线方程是,即,因为直线与圆相切,所以有

解得

所以直线的方程是.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网