题目内容
【题目】已知椭圆E:经过点,且离心率.
(1)求椭圆E的方程;
(2)设椭圆E的右顶点为A,若直线与椭圆E相交于MN两点(异于A点),且满足,试证明直线l经过定点,并求出该定点的坐标.
【答案】(1);(2)证明见解析,定点坐标为.
【解析】
(1)由题意的离心率公式,求得,,将点代入椭圆方程,即可求得和的值,即可求得椭圆的标准方程;
(2)将直线方程代入椭圆方程,由题意可知 ,由向量数量积的坐标运算及韦达定理,即可求得和的关系,代入即可求得直线恒过定点.
(1)由椭圆离心率,则,,
将代入椭圆方程:,解得:,则,,
椭圆方程为;
(2)证明:设,,
由,整理得,
则,,
且,即,
,
即,则,
即,
又,
,化简得,,
解得或且均满足,
当时,,直线过定点与已知矛盾,
当时,,直线过定点,
综上,直线l过定点,定点坐标为.
【题目】为了响应绿色出行,某市推出了新能源分时租赁汽车,并对该市市民使用新能源租赁汽车的态度进行调查,得到有关数据如下表1:
表1
愿意使用新能源租赁汽车 | 不愿意使用新能源租赁汽车 | 总计 | |
男性 | 100 | 300 | |
女性 | 400 | ||
总计 | 400 |
其中一款新能源分时租赁汽车的每次租车费用由行驶里程和用车时间两部分构成:行驶里程按1元/公里计费;用车时间不超过30分钟时,按0.15元/分钟计费;超过30分钟时,超出部分按0.20元/分钟计费.已知张先生从家到上班地点15公里,每天上班租用该款汽车一次,每次的用车时间均在20~60分钟之间,由于堵车红绿灯等因素,每次的用车时间(分钟)是一个随机变量.张先生记录了100次的上班用车时间,并统计出在不同时间段内的频数如下表2:
表2
时间(分钟) | (20,30] | (30,40] | (40,50] | (50,60] |
频数 | 20 | 40 | 30 | 10 |
(1)请补填表1中的空缺数据,并判断是否有99.5%的把握认为该市市民对新能源租赁汽车的使用态度与性别有关;
(2)根据表2中的数据,将各时间段发生的频率视为概率,以各时间段的区间中点值代表该时间段的取值,试估计张先生租用一次该款汽车上班的平均用车时间;
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |