题目内容
【题目】已知函数,,.
(1)当时,求函数的单调区间;
(2)若曲线在点(1,0)处的切线为l : x+y-1=0,求a,b的值;
(3)若恒成立,求的最大值.
【答案】(1)在上单调递增,在上单调递减;(2);(3).
【解析】
(1)先求导数,令可得增区间,令可得减区间;
(2)求导数,结合切线方程可求a,b的值;
(3)先求导数,根据恒成立分类讨论求解函数的最值,进而可得的最大值.
(1)由题意知,则.
令得,所以在上单调递增.
令得,所以在上单调递减.
所以函数在上单调递增,在上单调递减.
(2)因为,得,
由曲线在处的切线为,可知,且,
所以
(3)设,则恒成立.
易得
(i)当时,因为,所以此时在上单调递增.
①若,则当时满足条件,此时;
②若,取即且,
此时,所以不恒成立.
不满足条件;
(ii)当时,令,得由,得;
由,得
所以在上单调递减,在上单调递增.
要使得“恒成立”,必须有
“当时, ”成立.
所以.则
令则
令,得由,得;
由,得所以在上单调递增,在上单调递减,
所以,当时,
从而,当时, 的最大值为.
【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站年月促销费用(万元)和产品销量(万件)的具体数据.
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
促销费用 | 2 | 3 | 6 | 10 | 13 | 21 | 15 | 18 |
产品销量 | 1 | 1 | 2 | 3 | 3.5 | 5 | 4 | 4.5 |
(1)根据数据可知与具有线性相关关系,请建立关于的回归方程(系数精确到);
(2)已知月份该购物网站为庆祝成立周年,特定制奖励制度:用(单位:件)表示日销量,若,则每位员工每日奖励元;若,每位员工每日奖励元;若,则每位员工每日奖励元.现已知该网站月份日销量服从正态分布,请你计算某位员工当月奖励金额总数大约为多少元.(当月奖励金额总数精确到百分位)
参考数据:,,其中分别为第个月的促销费用和产品销量,.
参考公式:①对于一组数据,其回归方程的斜率和截距的最小二乘估计分别为,.
②若随机变量服从正态分布,则,.