题目内容
【题目】曲线是平面内与两个定点, 的距离之积等于的点的轨迹.给出下列命题:
①曲线过坐标原点;
②曲线关于坐标轴对称;
③若点在曲线上,则的周长有最小值;
④若点在曲线上,则面积有最大值.
其中正确命题的个数为
A. B. C. D.
【答案】C
【解析】设曲线C上任意一点的坐标为P(x,y),则[(x+2)2+y2][(x-2)2+y2]=81,
①把x=0,y=0代入上式得1=81,故曲线C不经过原点,故①错误;
②把(-x,y)代入上式得[(-x+2)2+y2][(-x-2)2+y2]=[(x-2)2+y2][(x+2)2+y2]=81,
∴曲线C关于y轴对称,
把(x,-y)代入上式显然也成立,故曲线C关于x轴对称,故②正确;
③∵|PF1|+|PF2|≥2=6
∴△F1PF2的周长为|PF1|+|PF2|+|F1F2|≥6+4=10,故③正确;
④△F1PF2面积S=,∴S2=4y2,
∵[(x+2)2+y2][(x-2)2+y2]=81,∴y4+(2x2+8)y2+(x2-4)2-81=0,
∴y2=--x2-4或y2=---x2-4(舍).
设=t则x2=
∴y2=t--4=-
∴当t=12时,y2取得最大值,即S的最大值为, 故④错误.
故选C.
【题目】某海滨浴场每年夏季每天的海浪高度y(米)是时间x(0≤x≤24,单位:小时)的函数,记作y=f(x),下表是每年夏季每天某些时刻的浪高数据:
x(时) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 |
(1)经观察发现可以用三角函数y=Acosωx+b对这些数据进行拟合,求函数f(x)的表达式;
(2)浴场规定,每天白天当海浪高度高于1.25米时,才对冲浪爱好者开放,求冲浪者每天白天可以在哪个时段到该浴场进行冲浪运动?