题目内容
【题目】设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有xf′(x)﹣f(x)<0恒成立,则不等式x2f(x)>0的解集是 .
【答案】(﹣∞,﹣2)∪(0,2)
【解析】解:构造函数g(x)= ,g′(x)= , 因为当x>0时,有xf′(x)﹣f(x)<0恒成立,即g′(x)= <0恒成立,
所以在(0,+∞)内g(x)单调递减.
因为f(2)=0,所以f(x)在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.
又因为f(x)是定义在R上的奇函数,
所以在(﹣∞,﹣2)内恒有f(x)>0;在(﹣2,0)内恒有f(x)<0.
又不等式x2f(x)>0的解集等价为不等式f(x)>0的解集.
所以不等式的解集为(﹣∞,﹣2)∪(0,2).
所以答案是:(﹣∞,﹣2)∪(0,2).
【考点精析】解答此题的关键在于理解函数单调性的性质的相关知识,掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集,以及对利用导数研究函数的单调性的理解,了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
练习册系列答案
相关题目