题目内容

【题目】已知三次函数f(x)=x3+bx2+cx+d(a,b,c∈R)过点(3,0),且函数f(x)在点(0,f(0))处的切线恰好是直线y=0.
(1)求函数f(x)的解析式;
(2)设函数g(x)=9x+m﹣1,若函数y=f(x)﹣g(x)在区间[﹣2,1]上有两个零点,求实数m的取值范围.

【答案】
(1)解:f′(x)=3x2+2bx+c,由已知条件得:

,解得b=﹣3,c=d=0;

∴f(x)=x3﹣3x2


(2)解:由已知条件得:f(x)﹣g(x)=0在[﹣2,1]上有两个不同的解;

即x3﹣3x2﹣9x﹣m+1=0在区间[﹣2,1]有两个不同的解;

即m=x3﹣3x2﹣9x+1在[﹣2,1]上有两个不同解.

令h(x)=x3﹣3x2﹣9x+1,h′(x)=3x2﹣6x﹣9,x∈[﹣2,1];

解3x2﹣6x﹣9>0得:﹣2≤x<﹣1;解3x2﹣6x﹣9<0得:﹣1<x≤1;

∴h(x)max=h(﹣1)=6,又f(﹣2)=﹣1,f(1)=﹣10,∴h(x)min=﹣10;

m=h(x)在区间[﹣2,1]上有两个不同的解,∴﹣1≤m<6.

∴实数m的取值范围是[﹣1,6)


【解析】(1)根据已知条件即可建立关于b,c,d的三个方程,解方程即可求出b,c,d,从而求出f(x)的解析式.(2)由已知条件可得到方程f(x)﹣g(x)=0在区间[﹣2,1]上有两个不同的解,带入f(x),g(x)后得到:方程x3﹣3x2﹣9x﹣m+1=0在区间[﹣2,1]上有两个不同解.因为求m的取值范围,所以把方程变成:m=x3﹣3x2﹣9x+1,求函数x3﹣3x2﹣9x+1在区间[﹣2,1]上的取值范围,要使方程有两个不同的解,从而求出m应满足的范围.这样便求出了m的取值范围.
【考点精析】解答此题的关键在于理解函数的最大(小)值与导数的相关知识,掌握求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网