ÌâÄ¿ÄÚÈÝ
20£®ÈçͼËùʾ£¬ÓÉÖ±Ïßx=a£¬x=a+1£¨a£¾0£©£¬y=x2¼°xÖáΧ³ÉµÄÇú±ßÌÝÐεÄÃæ»ý½éÓÚÏàӦС¾ØÐÎÓë´ó¾ØÐεÄÃæ»ýÖ®¼ä£¬¼´a2£¼${¡Ò}_{a}^{a+1}$x2dx£¼£¨a+1£©2£®Àà±ÈÖ®£¬?n¡ÊN*£¬$\frac{1}{n+1}$+$\frac{1}{n+2}$+¡+$\frac{1}{2n}$£¼A£¼$\frac{1}{n}$+$\frac{1}{n+1}$+¡+$\frac{1}{2n-1}$ºã³ÉÁ¢£¬ÔòʵÊýAµÈÓÚ£¨¡¡¡¡£©A£® | $\frac{1}{2}$ | B£® | $\frac{3}{5}$ | C£® | ln2 | D£® | ln$\frac{5}{2}$ |
·ÖÎö ÁîA=A1+A2+A3+¡+An£¬¸ù¾Ý¶¨»ý·ÖµÄ¶¨ÒåµÃµ½£ºA1=-lnn+ln£¨n+1£©£¬Í¬ÀíÇó³öA2£¬A3£¬¡£¬AnµÄÖµ£¬Ïà¼ÓÇó³ö¼´¿É£®
½â´ð ½â£ºÁîA=A1+A2+A3+¡+An£¬
ÓÉÌâÒâµÃ£º$\frac{1}{n+1}$£¼A1£¼$\frac{1}{n}$£¬$\frac{1}{n+2}$£¼A2£¼$\frac{1}{n+1}$£¬$\frac{1}{n+3}$£¼A3£¼$\frac{1}{n+2}$£¬¡£¬$\frac{1}{2n}$£¼An£¼$\frac{1}{2n-1}$£¬
¡àA1=${¡Ò}_{n}^{n+1}$$\frac{1}{x}$dx=lnx|${\;}_{n}^{n+1}$=ln£¨n+1£©-lnn£¬
ͬÀí£ºA2=-ln£¨n+1£©+ln£¨n+2£©£¬A3=-ln£¨n+2£©+ln£¨n+3£©£¬¡£¬An=-ln£¨2n-1£©+ln2n£¬
¡àA=A1+A2+A3+¡+An
=-lnn+ln£¨n+1£©-ln£¨n+1£©+ln£¨n+2£©-ln£¨n+2£©+ln£¨n+3£©-¡-ln£¨2n-1£©+ln2n
=ln2n-lnn
=ln2£¬
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²ìÁ˶¨»ý·ÖµÄ¼òµ¥Ó¦Ó㬸ù¾Ý¶¨»ý·ÖµÄ¶¨ÒåµÃµ½A1£¬A2£¬A3£¬¡£¬AnµÄÖµÊǽâÌâµÄ¹Ø¼ü£¬±¾ÌâÊÇÒ»µÀÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
6£®Ë«ÇúÏß$\frac{x^2}{10}-\frac{y^2}{2}$=1µÄ½¹¾àΪ£¨¡¡¡¡£©
A£® | 2$\sqrt{3}$ | B£® | 4$\sqrt{2}$ | C£® | 2$\sqrt{2}$ | D£® | 4$\sqrt{3}$ |
5£®¸´Êýz=$\frac{3+i}{1-i}$£¨iΪÐéÊýµ¥Î»£©ÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µÄµãλÓÚ£¨¡¡¡¡£©
A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |
12£®Èô²»µÈʽx2-logax£¼0¶ÔÈÎÒâµÄx¡Ê£¨0£¬$\frac{1}{2}$£©ºã³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£® | £¨0£¬1£© | B£® | [$\frac{1}{16}$£¬1£© | C£® | £¨1£¬+¡Þ£© | D£® | £¨0£¬$\frac{1}{16}$] |
10£®ÒÑÖª¼¯ºÏA={x||x+1¡Ü2}£¬B={x|y=lg£¨x2-x-2£©}£¬ÔòA¡É∁RB£¨¡¡¡¡£©
A£® | [-1£¬1] | B£® | [-3£¬-1] | C£® | £¨-1£¬1] | D£® | [-3£¬-1£© |