题目内容
【题目】如图,三棱柱中,侧棱垂直底面,,,是棱的中点.
(Ⅰ)证明:平面平面.
(Ⅱ)平面分此棱柱为两部分,求这两部分体积比.
【答案】(I)证明见解析;(II).
【解析】
试题分析:(I)易证得平面,再由面面垂直的判定定理即可证得平面平面;(II)设棱锥的体积为,易求得,三棱术的体积为,于是得,从而可得答案.
试题解析: (I)由题意知BC⊥CC1,BC⊥AC,CC1∩AC=C,
∴BC⊥平面ACC1A1,又DC1平面ACC1A1,
∴DC1⊥BC.
由题设知∠A1DC1=∠ADC=45°,
∴∠CDC1=90°,即DC1⊥DC,又DC∩BC=C,
∴DC1⊥平面BDC,又DC1平面BDC1,
∴平面BDC1⊥平面BDC;
(II)设棱锥B﹣DACC1的体积为V1,AC=1,由题意得V1=××1×1=,
又三棱柱ABC﹣A1B1C1的体积V=1,
∴(V﹣V1):V1=1:1,
∴平面BDC1分此棱柱两部分体积的比为1:1.
练习册系列答案
相关题目