ÌâÄ¿ÄÚÈÝ
20£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=4cos¦È£¬ÒÔ¼«µãΪƽÃæÖ±½Ç×ø±êϵµÄԵ㣬¼«ÖáΪxÖáµÄÕý°ëÖᣬ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+1}\\{y=\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£»£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©ÒÑÖªµãP£¨1£¬0£©£¬ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó|PA|•|PB|µÄÖµ£®
·ÖÎö £¨1£©°ÑµÈʽ¦Ñ=4cos¦ÈÁ½±ßͬʱ³ËÒԦѣ¬´úÈëx=¦Ñcos¦È£¬¦Ñ2=x2+y2µÃ´ð°¸£¬Ö±½ÓÓÉÖ±ÏߵIJÎÊý·½³ÌÏûÈ¥²ÎÊýtµÃµ½Ö±ÏßµÄÆÕͨ·½³Ì£»
£¨2£©°ÑÖ±ÏߵIJÎÊý·½³Ì´úÈëÔ²µÄÆÕͨ·½³Ì£¬ÀûÓÃÖ±Ïß²ÎÊý·½³ÌÖвÎÊýtµÄ¼¸ºÎÒâÒåÇóµÃ|PA|•|PB|µÄÖµ£®
½â´ð ½â£º£¨1£©ÓɦÑ=4cos¦È£¬µÃ¦Ñ2=4¦Ñcos¦È£¬¼´x2+y2-4x=0£»
ÓÉ$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+1}\\{y=\frac{1}{2}t}\end{array}\right.$£¬µÃt=2y£¬´úÈë$x=\frac{\sqrt{3}}{2}t+1$£¬µÃ£º$y=\frac{\sqrt{3}}{3}x-\frac{\sqrt{3}}{3}$£»
£¨2£©°Ñ$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+1}\\{y=\frac{1}{2}t}\end{array}\right.$´úÈëx2+y2-4x=0£¬µÃ${t}^{2}-\sqrt{3}t-3=0$£®
¡à|PA|•|PB|=|t1t2|=3£®
µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì»¯ÆÕͨ·½³Ì£¬¿¼²é¼«×ø±ê·½³Ì»¯Ö±½Ç×ø±ê·½³Ì£¬¿¼²éÁËÖ±ÏߵIJÎÊý·½³ÌÖвÎÊýtµÄ¼¸ºÎÒâÒ壬ÊÇ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
15£®ÒÑÖªº¯Êýf£¨x£©=$\frac{sinx}{|cosx|}$£¬Ôòº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚÊÇ£¨¡¡¡¡£©
A£® | $\frac{¦Ð}{4}$ | B£® | $\frac{¦Ð}{2}$ | C£® | ¦Ð | D£® | 2¦Ð |
5£®ÒÑÖªxy=1£¬ÇÒO£¼y£¼$\frac{1}{2}$£¬Ôò$\frac{{x}^{2}+16{y}^{2}}{x-4y}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£® | 2$\sqrt{2}$ | B£® | $\frac{17}{3}$ | C£® | 4$\sqrt{2}$ | D£® | 4 |
12£®ÒÑÖªµãP£¨x£¬y£©ÔÚÇúÏß$\left\{\begin{array}{l}x=-2+cos¦È\\ y=sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£¬ÇҦȡÊ[¦Ð£¬2¦Ð£©£©ÉÏ£¬ÔòµãPµ½Ö±Ïß$\left\{\begin{array}{l}x=2+t\\ y=-1-t\end{array}\right.£¨t$Ϊ²ÎÊý£©µÄ¾àÀëµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£® | [-$\frac{{3\sqrt{2}}}{2}$£¬$\frac{{3\sqrt{2}}}{2}$] | B£® | [$\frac{{3\sqrt{2}}}{2}$-1£¬$\frac{{3\sqrt{2}}}{2}$+1] | C£® | £¨$\sqrt{2}$£¬2$\sqrt{2}$] | D£® | £¨$\sqrt{2}$£¬$\frac{{3\sqrt{2}}}{2}$+1] |