题目内容
【题目】已知抛物线:的焦点为,点为上异于顶点的任意一点,过的直线交于另一点,交轴正半轴于点,且有,当点的横坐标为3时,为正三角形.
(1)求的方程;
(2)若直线,且和相切于点,试问直线是否过定点,若过定点,求出定点坐标;若不过定点,说明理由.
【答案】(1) (2) 直线过定点.
【解析】
(1)设,抛物线的焦点为,由,可得,从而,再由点横坐标与中点横坐标相同可求得.
(2)设,可得,由,可设直线的方程为,由它与抛物线相切可求得,也即得出点坐标,求出直线方程,观察得其过定点.注意分类,即按直线斜率是否存在分类讨论.
(1)抛物线的焦点,设,则的中点坐标为,
∵,∴,解得,或(舍),
∵,∴,解得,
∴抛物线方程为.
(2)由(1)知,,设,,
∵,则,由得,即,
∴直线的斜率,∵,故设直线的方程为,
联立方程组,得,
∵直线与抛物线相切,∴,,
设,则,,
当时,,直线的方程为,
∵,∴直线的方程为,∴直线过定点,
当时,直线方程为,经过定点,
综上,直线过定点.
【题目】某研究公司为了调查公众对某事件的关注程度,在某年的连续6个月内,月份和关注人数(单位:百)()数据做了初步处理,得到下面的散点图及一些统计量的值.
17.5 | 35 | 36.5 |
(1)由散点图看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明,并建立y关于x的回归方程;
(2)经统计,调查材料费用v(单位:百元)与调查人数满足函数关系,求材料费用的最小值,并预测此时的调查人数;
(3)现从这6个月中,随机抽取3个月份,求关注人数不低于1600人的月份个数分布列与数学期望.
参考公式:相关系数,若,则y与x的线性相关程度相当高,可用线性回归模型拟合y与x的关系.回归方程中斜率与截距的最小二乘估计公式分别为,.
【题目】某单位计划在一水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.
(1)求未来3年中,设表示流量超过120的年数,求的分布列及期望;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:
年入流量 | |||
发电机最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?