题目内容
【题目】已知数列{an}满足,且.
(1)求证:数列是等差数列,并求出数列的通项公式;
(2)求数列的前项和.
【答案】(1) an=(2n-1)2n-1;(2) Sn=(2n-3)2n+3.
【解析】
(1)根据等差数列的定义,判断数列是等差数列,并写出它的通项公式以及{an}的通项公式;
(2)根据数列{an}的前n项和定义,利用错位相减法求出Sn;
(1)证明:因为an=2an-1+2n,所以==+1,
即-=1,所以数列是等差数列,且公差d=1,其首项=,所以=+(n-1)×1=n-,解得an=×2n=(2n-1)2n-1.
(2)Sn=1×20+3×21+5×22+…+(2n-1)×2n-1,①
2Sn=1×21+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n,②
①-②,得-Sn=1×20+2×21+2×22+…+2×2n-1-(2n-1)2n
=1+-(2n-1)2n=(3-2n)2n-3.
所以Sn=(2n-3)2n+3.
练习册系列答案
相关题目