题目内容
【题目】已知椭圆C:上的点到右焦点F的最大距离为,离心率为.
求椭圆C的方程;
如图,过点的动直线l交椭圆C于M,N两点,直线l的斜率为,A为椭圆上的一点,直线OA的斜率为,且,B是线段OA延长线上一点,且过原点O作以B为圆心,以为半径的圆B的切线,切点为令,求取值范围.
【答案】(1);(2).
【解析】
依题,结合离心率求得a与c的值,再由隐含条件求得b,则椭圆方程可求;
由已知可得直线l的方程,与椭圆C:联立,化为关于x的一元二次方程,利用弦长公式求得弦,写出OA所在直线方程,与椭C:联立求得,得到,利用换元法求得的范围,把转化为含的代数式求解.
依题,,
解得,,
.
椭圆C的方程为;
由已知可得直线l的方程为:,与椭圆C:联立,
得,由题意,
设,,则,.
弦,
OA所在直线方程为,与椭C:联立,解得,
.
.
令,则,
则,
得到,
.
令,由知,,换元得:
,其中.
.
练习册系列答案
相关题目
【题目】随着社会的进步与发展,中国的网民数量急剧增加.下表是中国从年网民人数及互联网普及率、手机网民人数(单位:亿)及手机网民普及率的相关数据.
年份 | 网民人数 | 互联网普及率 | 手机网民人数 | 手机网民普及率 |
2009 | ||||
2010 | ||||
2011 | ||||
2012 | ||||
2013 | ||||
2014 | ||||
2015 | ||||
2016 | ||||
2017 | ||||
2018 |
(互联网普及率(网民人数/人口总数)×100%;手机网民普及率(手机网民人数/人口总数)×100%)
(Ⅰ)从这十年中随机选取一年,求该年手机网民人数占网民总人数比值超过80%的概率;
(Ⅱ)分别从网民人数超过6亿的年份中任选两年,记为手机网民普及率超过50%的年数,求的分布列及数学期望;
(Ⅲ)若记年中国网民人数的方差为,手机网民人数的方差为,试判断与的大小关系.(只需写出结论)