题目内容
【题目】如图所示,在直三棱柱中,
,
平面
,D为AC的中点.
(1)求证:平面
;
(2)求证:平面
;
(3)设E是上一点,试确定E的位置使平面
平面BDE,并说明理由.
【答案】(1)证明见详解,(2)证明见详解,(3)当为
的中点时,平面
平面BDE,证明见详解
【解析】
(1)连接与
相交于
,可得
,结合线面平行的判定定理即可证明
平面
(2)先证明和
即可得出
平面
,然后可得
,又
,即可证明
平面
(3)当为
的中点时,平面
平面BDE,由已知易得
,结合
平面
可得
平面
,进而根据面面垂直的判定定理得到结论.
(1)如图,连接与
相交于
,则
为
的中点
连接,又
为
的中点
所以,又
平面
,
平面
所以平面
(2)因为,所以四边形
为正方形
所以
又因为平面
,
平面
所以
所以平面
,所以
又在直三棱柱中,
所以平面
(3)当为
的中点时,平面
平面BDE
因为分别是
的中点
所以,因为
平面
所以平面
,又
平面
所以平面平面BDE
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】光伏发电是利用太阳能电池及相关设备将太阳光能直接转化为电能,近几年在国内出台的光伏发电补贴政策的引导下,某地光伏发电装机量急剧上涨,如下表:
年份 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
年份代码 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
新增光伏装机量 | 0.4 | 0.8 | 1.6 | 3.1 | 6.1 | 7.1 | 9.7 | 12.2 |
某位同学分别用两种模型:①,②
进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差等于
)
经过计算得,
,
,
,其中
,
.
(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由.
(2)根据(1)的判断结果及表中数据建立关于
的回归方程,并预测该地区2020年新增光伏装机量是多少.(在计算回归系数时精确到0.01)
附:归直线的斜率和截距的最小二乘估计公式分别为:,
.
【题目】某一电视台对年龄高于40岁和不高于40岁的人是否喜欢西班牙队进行调查,40岁以上调查了50人,不高于40岁调查了50人,所得数据制成如下列联表:
不喜欢西班牙队 | 喜欢西班牙队 | 总计 | |
40岁以上 | 50 | ||
不高于40岁 | 15 | 35 | 50 |
总计 | 100 |
已知工作人员从所有统计结果中任取一个,取到喜欢西班牙队的人的概率为,则有超过________的把握认为年龄与西班牙队的被喜欢程度有关.
参考公式与临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.702 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |