题目内容
如图,在四棱锥P
ABCD中,底面是边长为2
的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2
,M、N分别为PB、PD的中点.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240415397363046.jpg)
(1)证明:MN∥平面ABCD;
(2)过点A作AQ⊥PC,垂足为点Q,求二面角A
MN
Q的平面角的余弦值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539673357.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539689344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539704341.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240415397363046.jpg)
(1)证明:MN∥平面ABCD;
(2)过点A作AQ⊥PC,垂足为点Q,求二面角A
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539673357.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539673357.jpg)
(1)见解析 (2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539798461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539798461.png)
(1)证明:连接BD,因为M、N分别是PB、PD的中点,所以MN是△PBD的中位线,所以MN∥BD.
又因为MN?平面ABCD,BD?平面ABCD,
所以MN∥平面ABCD.
(2)解: 如图所示,在菱形ABCD中,∠BAD=120°,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240415398143257.jpg)
得AC=AB=BC=CD=DA,
BD=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539689344.png)
又因为PA⊥平面ABCD,
所以PA⊥AB,PA⊥AC,
PA⊥AD.
所以PB=PC=PD.
所以△PBC≌△PDC.
而M、N分别是PB、PD的中点,
所以MQ=NQ,
且AM=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539845338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539845338.png)
取线段MN的中点E,连接AE,EQ,
则AE⊥MN,QE⊥MN,
所以∠AEQ为二面角A
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539673357.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539673357.jpg)
由AB=2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539689344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539704341.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539845338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539938502.png)
在直角△PAC中,AQ⊥PC,得AQ=2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539970344.png)
在△PBC中,cos∠BPC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539970928.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539985380.png)
得MQ=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240415400011258.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041540016322.png)
在等腰△MQN中,MQ=NQ=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041540016322.png)
得QE=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041540048796.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041540094431.png)
在△AEQ中,AE=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539938502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041540094431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539970344.png)
得cos∠AEQ=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240415401571033.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539798461.png)
所以二面角A
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539673357.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539673357.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041539798461.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目