题目内容
设函数f(x)=
sinxcosx+cos2x+a.
(1)写出函数f(x)的最小正周期及单调递减区间;
(2)当x∈
时,函数f(x)的最大值与最小值的和为
,求a的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939203344.png)
(1)写出函数f(x)的最小正周期及单调递减区间;
(2)当x∈
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939219661.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939235388.png)
(1)
(2)a=0
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939250900.png)
(1)f(x)=
sin2x+
+a=sin
+a+
,∴T=π.由
+2kπ≤2x+
≤
+2kπ,得
+kx≤x≤
+kπ.故函数f(x)的单调递减区间是
(k∈Z).
(2)∵-
≤x≤
,∴-
≤2x+
≤
.∴-
≤sin
≤1.当x∈
时,原函数的最大值与最小值的和为
=
,∴a=0
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939266453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939281626.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939500817.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939515338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939531421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939547420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939578494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939547420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939609491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939250900.png)
(2)∵-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939547420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939656413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939547420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939547420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939703482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939515338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939500817.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939219661.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240409397811073.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040939235388.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目