题目内容

【题目】已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.

(1){an}的通项公式;

(2)a1+a4+a7+…+a3n2.

【答案】(1)an=-2n+27;(2)-3n2+28n.

【解析】解:(1){an}的公差为d.由题意,

A112a1a13

(a110d)2a1(a112d)

于是d(2a125d)0.

a125,所以d0(舍去),或d=-2.

an=-2n27.

(2)Sna1a4a7a3n2.

(1)a3n2=-6n31,故{a3n2}是首项为25,公差为-6的等差数列.从而Sn(a1a3n2)·(6n56)=-3n228n.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网