题目内容
【题目】已知函数有两个极值点(为自然对数的底数).
(Ⅰ)求实数的取值范围;
(Ⅱ)求证:.
【答案】(1);(2)见解析.
【解析】分析:(Ⅰ) 函数有两个极值点,只需有两个根,利用导数研究函数的单调性,结合零点存在定理与函数图象可得当时,没有极值点;当时,当时,有两个极值点;(Ⅱ)由(Ⅰ)知,为的两个实数根,,在上单调递减,问题转化为,要证,只需证,即证,利用导数可得,从而可得结论.
详解: (Ⅰ)∵,∴.
设,则.
令,解得.
∴当时,;当时,.
∴.
当时,,∴函数单调递增,没有极值点;
当时,,且当时,;当时,.
∴当时,有两个零点.
不妨设,则.
∴当函数有两个极值点时,的取值范围为.
(Ⅱ)由(Ⅰ)知,为的两个实数根,,在上单调递减.
下面先证,只需证.
∵,得,∴.
设,,
则,∴在上单调递减,
∴,∴,∴.
∵函数在上也单调递减,∴.
∴要证,只需证,即证.
设函数,则.
设,则,
∴在上单调递增,∴,即.
∴在上单调递增,∴.
∴当时,,则,
∴,∴.
【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.
(1)大气污染可引起心悸、呼吸困难等心肺疾病. 为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
问有多大的把握认为是否患心肺疾病与性别有关?
(2)空气质量指数PM2.5(单位:μg/)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重. 某市在2016年年初着手治理环境污染,改善空气质量,检测到2016年1~5月的日平均PM2.5指数如下表:
月份x | 1 | 2 | 3 | 4 | 5 |
PM2.5指数y | 79 | 76 | 75 | 73 | 72 |
试根据上表数据,求月份x与PM2.5指数y的线性回归直线方程,并预测2016年8月份的日平均PM2.5指数 (保留小数点后一位).