题目内容
18.在△ABC中,a=2bsinA,a2-b2-c2=bc,试求角A,B,C.分析 将a=2bsinA利用正弦定理化简,根据sinA不为0求出sinB的值,进而确定出B的度数,利用余弦定理表示出cosA,将第二个等式变形后代入求出cosA的值,确定出A的度数,即可求出C的度数.
解答 解:∵在△ABC中,a=2bsinA,
∴sinA=2sinAsinB,
∵sinA≠0,∴sinB=$\frac{1}{2}$,即B=30°,
∵a2-b2-c2=$\sqrt{3}$bc,即b2+c2-a2=-bc,
∴由余弦定理得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=-$\frac{1}{2}$,
∴A=120°,
则C=180°-A-B=30°.
点评 此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握正弦、余弦定理是解本题的关键.
练习册系列答案
相关题目
8.a,b表示直线,α表示平面,则下列命题中正确的是( )
A. | $\left.\begin{array}{l}{a∥b}\\{b⊥α}\end{array}\right\}$⇒a⊥α | B. | $\left.\begin{array}{l}{a∥b}\\{b?α}\end{array}\right\}$⇒a∥α | C. | $\left.\begin{array}{l}{a⊥b}\\{b∥α}\end{array}\right\}$⇒a⊥α | D. | $\left.\begin{array}{l}{a⊥α}\\{a⊥b}\end{array}\right\}$⇒b?α |
6.某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
(1)根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(2)根据表中数据,在调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.
附:P(K2≥3.841=0.05)K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
(1)根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(2)根据表中数据,在调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.
年级名次 是否近视 | 1~50 | 951~1000 |
近视 | 41 | 32 |
不近视 | 9 | 18 |
13.已知sin(α+β)cosβ-cos(α+β)sinβ=$\frac{3}{5}$,且α在第二象限,则tan$\frac{α}{2}$( )
A. | $\frac{1}{3}$或-3 | B. | 3 | C. | $\frac{1}{3}$ | D. | 3或-$\frac{1}{3}$ |
7.已知$sin(α+\frac{π}{3})+sinα$=-$\frac{{4\sqrt{3}}}{5},-\frac{π}{2}$<α<0,则cosα=( )
A. | $\frac{{3\sqrt{3}+4}}{10}$ | B. | $\frac{{3\sqrt{3}-4}}{10}$ | C. | $\frac{{4-3\sqrt{3}}}{10}$ | D. | $-\frac{{3\sqrt{3}+4}}{10}$ |
17.在(a+x)7展开式中x4的系数为280,则实数a的值为( )
A. | 1 | B. | ±1 | C. | 2 | D. | ±2 |