题目内容
17.在(a+x)7展开式中x4的系数为280,则实数a的值为( )A. | 1 | B. | ±1 | C. | 2 | D. | ±2 |
分析 先求出二项式展开式的通项公式,再令x的幂指数等于4,求得r的值,即可求得展开式中x4的系数;再结合x4的系数为280,求得a的值.
解答 解:(a+x)7展开式的通项公式为 Tr+1=${C}_{7}^{r}$•a7-r•xr,令r=4,
可得展开式中x4的系数为${C}_{7}^{4}$•a3=280,求得a=2,
故选:C.
点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.
练习册系列答案
相关题目
19.设l是直线,a,β是两个不同的平面,则下列正确的是( )
A. | 若l∥a,l∥β,则a∥β | B. | 若α⊥β,l∥α,则l⊥β | C. | 若α⊥β,l⊥α,则l⊥β | D. | 若l∥α,l⊥β,则α⊥β |
5.若函数f(x)=x-sinx对任意的θ∈(0,π),f(cos2θ)+f(2msinθ-5)≤0恒成立,则m的取值范围是( )
A. | (-∞,2$\sqrt{2}$] | B. | (-∞,3] | C. | [2$\sqrt{2}$,+∞) | D. | [3,+∞) |
2.某种设备购入之后从第二年开始每年都需要返厂进行硬件维修和软件升级,已知其使用年份x1(年)与所支出的返厂费用y1(万元)的数据资料算得如表结果:
(1)求所支出的返厂费用y对使用年份x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)当使用年份为9年时,试估计返厂所需要支出的费用是多少?
(在线性回归方程$\widehat{y}$=$\widehat{b}$x$\widehat{a}$中,$\widehat{b}$=$\frac{\underset{\stackrel{n}{∑}}{n+1}{x}_{1}{y}_{1}-n\widehat{x}\widehat{y}}{\underset{\stackrel{n}{∑}}{n-1}{x}_{1}^{2}-n\widehat{x}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x,$\widehat{x}$,$\widehat{y}$为样本平均值)
x1 | 2 | 3 | 4 | 5 | 6 |
y1 | 2.5 | 4 | 5 | 6 | 7.5 |
(2)当使用年份为9年时,试估计返厂所需要支出的费用是多少?
(在线性回归方程$\widehat{y}$=$\widehat{b}$x$\widehat{a}$中,$\widehat{b}$=$\frac{\underset{\stackrel{n}{∑}}{n+1}{x}_{1}{y}_{1}-n\widehat{x}\widehat{y}}{\underset{\stackrel{n}{∑}}{n-1}{x}_{1}^{2}-n\widehat{x}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x,$\widehat{x}$,$\widehat{y}$为样本平均值)
7.某单位为了了解用电量y度与气温x℃之间的关系随机统计了某4天的用电量与当天气温
(1)求用电量y与气温x之间的线性回归方程,
(2)由(1)的方程预测气温为5℃时,用电量的度数.
参考公式:$\begin{array}{l}b=\frac{{\sum_{i=1}^n{({x_i}-\overline x})({y_i}-\overline y)}}{{\sum_{i=1}^n{({x_i}-\overline x}{)^2}}}=\frac{{\sum_{i=1}^n{x_i}{y_i}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\\ \overline a=\overline y-b\overline x\end{array}$.
气温(℃) | 14 | 12 | 8 | 6 |
用电量 | 22 | 26 | 34 | 38 |
(2)由(1)的方程预测气温为5℃时,用电量的度数.
参考公式:$\begin{array}{l}b=\frac{{\sum_{i=1}^n{({x_i}-\overline x})({y_i}-\overline y)}}{{\sum_{i=1}^n{({x_i}-\overline x}{)^2}}}=\frac{{\sum_{i=1}^n{x_i}{y_i}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\\ \overline a=\overline y-b\overline x\end{array}$.