题目内容

【题目】为发挥体育核心素养的独特育人价值,越来越多的中学将某些体育项目纳入到学生的必修课程.惠州市某中学计划在高一年级开设游泳课程,为了解学生对游泳的兴趣,某数学研究学习小组随机从该校高一年级学生中抽取了100人进行调查.

1)已知在被抽取的学生中高一班学生有6名,其中3名对游泳感兴趣,现在从这6名学生中随机抽取3人,求至少有2人对游泳感兴趣的概率;

2)该研究性学习小组在调查中发现,对游泳感兴趣的学生中有部分曾在市级或市级以上游泳比赛中获奖,具体获奖人数如下表所示.若从高一班和高一班获奖学生中随机各抽取2人进行跟踪调查,记选中的4人中市级以上游泳比赛获奖的人数为,求随机变量的分布列及数学期望.

班级

市级

比赛获奖人数

2

2

3

3

4

4

3

3

4

2

市级以上

比赛获奖人数

2

2

1

0

2

3

3

2

1

2

【答案】(1)(2)分布列见解析,

【解析】

1)利用组合数结合古典概型求出从这6名学生中随机抽取3人,至少有2人对游泳有兴趣的概率.

2)由题意可知ξ的所有可能取值为0123,分别求出相应的概率,由此能求出ξ的分布列和Eξ).

1

记事件6名学生抽取的3人中恰好有i人有兴趣,12

互斥

故所求概率为

2)由题意知,随机变量的所有可能取值有0123

的分布列为:

0

1

2

3

p

数学期望为

练习册系列答案
相关题目

【题目】党中央、国务院历来高度重视青少年的健康成长.“少年强则国强”,青少年身心健康、体魄强健、意志坚强、充满活力,是一个民族旺盛生命力的体现,是社会文明进步的标志,是国家综合实力的重要方面.全面实施《国家学生体质健康标准》,把健康素质作为评价学生全面健康发展的重要指标,是新时代的要求.《国家学生体质健康标准》有一项指标是学生体质指数(),其计算公式为:,当时,认为“超重”,应加强锻炼以改善.某高中高一、高二年级学生共2000人,人数分布如表(a.为了解这2000名学生的指数情况,从中随机抽取容量为160的一个样本.

表(a

性别

年级

男生

女生

合计

高一年级

550

650

1200

高二年级

425

375

800

合计

975

1025

2000

1)为了使抽取的160个学生更具代表性,宜采取分层抽样,试给出一个合理的分层抽样方案,并确定每层应抽取出的学生人数;

2)分析这160个学生的值,统计出“超重”的学生人数分布如表(b.

表(b

性别

年级

男生

女生

高一年级

4

6

高二年级

2

4

(ⅰ)试估计这2000名学生中“超重”的学生数;

(ⅱ)对于该校的2000名学生,应用独立性检验的知识,可分析出性别变量与年级变量哪一个与“是否超重”的关联性更强.应用卡方检验,可依次得到的观测值,试判断的大小关系.(只需写出结论)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网