题目内容

【题目】集合A={x|(x﹣3)(x﹣a)=0,a∈R},B={x|(x﹣4)(x﹣1)=0},则集合A∪B,A∩B中元素的个数不可能是(
A.4和1
B.4和0
C.3和1
D.3和0

【答案】A
【解析】解:集合A={x|(x﹣3)(x﹣a)=0,a∈R}= ,B={x|(x﹣4)(x﹣1)=0}={1,4},
当a=3时,集合A∪B={3,1,4},A∩B=,集合A∪B,A∩B中元素的个数为3,0.
当a≠3,1,4时,集合A∪B={a,3,1,4},A∩B=,集合A∪B,A∩B中元素的个数为4,0.
当a=1时,集合A∪B={3,1,4},A∩B={1},集合A∪B,A∩B中元素的个数为3,1.
当a=4时,集合A∪B={3,1,4},A∩B={4},集合A∪B,A∩B中元素的个数为3,1.
故选:A.
【考点精析】掌握集合的并集运算和集合的交集运算是解答本题的根本,需要知道并集的性质:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB,反之也成立;交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网