题目内容
【题目】已知椭圆 的左右焦点分别为,直线经过椭圆的右焦点与椭圆交于两点,且.
(I)求直线的方程;
(II)已知过右焦点的动直线与椭圆交于不同两点,是否存在轴上一定点,使?(为坐标原点)若存在,求出点的坐标;若不存在说明理由.
【答案】(1)或;(2)
【解析】
(I)解法一:直线方程与椭圆方程联立化为一元二次方程,利用弦长公式即可得出.解法二:利用焦半径公式可得.
(II) II)设l2的方程为与椭圆联立:.假设存在点T(t,0)符合要求,设P(x1,y1),Q(x2,y2).∠OTP=∠OTQ,再利用根与系数的关系即可得出.
解:(I)设的方程为与椭圆联立得
直线经过椭圆内一点,故恒成立,设,则,
,
解得,的方程为或;
解2:由焦半径公式有,解得.
(II)设的方程为与椭圆联立:,由于过椭圆内一点,
假设存在点符合要求,设,韦达定理:
,点在直线上有
,即, ,
解得.
练习册系列答案
相关题目
【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程;
(3)试预测加工10个零件需要多少时间.
参考公式:回归直线,
其中,