题目内容

已知函数的图象在点处的切线方程为
.
(1)求实数的值;
(2)设.
①若上的增函数,求实数的最大值;
②是否存在点,使得过点的直线若能与曲线围成两个封闭图形,则这两个封闭图形的面积总相等.若存在,求出点坐标;若不存在,说明理由.
(1) ;(2)①3;②存在,.

试题分析:(1)由题意可知,又切线的斜率为,从而可列出关于的方程组,解得;(2)①由(1)得,它在区间上是增函数,说明上恒成立,求得,那么,可变形为,因此我们只要求出上的最小值即可,而求最小值时可用换元法.设;②从题意可知点若存在,则必是图象的对称中心,因此我们着重点在于寻找的对称中心,同时我们知道爱的渴,则图象的对称点心是,由于是由一个整式与一个分式相加,可以先考虑分式,使为常数,,再代入验证是不是为常数.
试题解析:(1)时,
        2分
在直线上,,即 
           4分

(2)①
上的增函数,

上恒成立,        6分
  则
, 上恒成立        7分
恒成立,, 实数最大值为        9分
②由


,          11分
表明:若点图象上任意一点,则点也在图象上,
而线段的中点恒为;由此可知图象关于点对称.
这也表明存在点,使得过的直线若能与图象相交围成封闭图形,
则这两个封闭图形面积相等.        13分(其它解法相应给分).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网