题目内容

在三棱柱中,底面是正三角形,侧棱底面,点是侧面 的中心,若,则直线与平面所成角的大小为(   )

A. B. C. D.

A

解析试题分析:由题意画出图形,取BC的中点D,连接AD与ED,因为三棱柱ABC-A1B1C1中,底面是正三角形,侧棱AA1⊥底面ABC,所以平面BCC1B1⊥平面ABC,点E是侧面BB1CC1的中心,所以ED⊥BC,AD⊥BC,所以AD⊥平面EBC,∠AED就是直线AE与平面BB1CC1所成角,∵AA1=3AB,∴,所以∠AED=30°,即直线与平面所成角
考点:直线与平面所成的角;正棱柱的结构特征。
点评:本题考查直线与平面垂直的判断方法,直线与平面所成角的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网