题目内容
点在直线上,若存在过的直线交抛物线于两点,且,则称点为“点”,那么下列结论中正确的是( )
A.直线上的所有点都是“点” | B.直线上仅有有限个点是“点” |
C.直线上的所有点都不是“点” | D.直线上有无穷多个点是“点” |
A
试题分析:设则
在上
消去,整理得关于x的方程
恒成立,
∴方程恒有实数解,
∴故选A.
点评:本题主要考查了直线与圆锥曲线的位置关系.一般是把直线与圆锥曲线方程联立,解决直线与圆锥曲线的交点个数时,利用判别式来判断
练习册系列答案
相关题目