题目内容
【题目】设函数,为f(x)的导函数.
(1)若a=b=c,f(4)=8,求a的值;
(2)若a≠b,b=c,且f(x)和的零点均在集合中,求f(x)的极小值;
(3)若,且f(x)的极大值为M,求证:M≤.
【答案】(1);
(2)见解析;
(3)见解析.
【解析】
(1)由题意得到关于a的方程,解方程即可确定a的值;
(2)由题意首先确定a,b,c的值从而确定函数的解析式,然后求解其导函数,由导函数即可确定函数的极小值.
(3)由题意首先确定函数的极大值M的表达式,然后可用如下方法证明题中的不等式:
解法一:由函数的解析式结合不等式的性质进行放缩即可证得题中的不等式;
解法二:由题意构造函数,求得函数在定义域内的最大值,
因为,所以.
当时,.
令,则.
令,得.列表如下:
+ | 0 | – | |
极大值 |
所以当时,取得极大值,且是最大值,故.
所以当时,,因此.
(1)因为,所以.
因为,所以,解得.
(2)因为,
所以,
从而.令,得或.
因为,都在集合中,且,
所以.
此时,.
令,得或.列表如下:
1 | |||||
+ | 0 | – | 0 | + | |
极大值 | 极小值 |
所以的极小值为.
(3)因为,所以,
.
因为,所以,
则有2个不同的零点,设为.
由,得.
列表如下:
| |||||
+ | 0 | – | 0 | + | |
极大值 | 极小值 |
所以的极大值.
解法一:
.因此.
解法二:
因为,所以.
当时,.
令,则.
令,得.列表如下:
+ | 0 | – | |
极大值 |
所以当时,取得极大值,且是最大值,故.
所以当时,,因此.
练习册系列答案
相关题目