题目内容
【题目】设是函数定义域内的一个子集,若存在,使得成立,则称是的一个“不动点”,也称在区间上存在不动点.
设函数,.
(1)若,求函数的不动点;
(2)若函数在上不存在不动点,求实数的取值范围.
【答案】(1)0;(2)
【解析】
(1)根据新定义,当时,,求出,即可得出函数的不动点;
(2)由于函数在上不存在不动点,则在区间上无解,即在上无解,利用换元法,令,,转化为在区间上无解,构造新函数并求出单调区间,结合函数的恒成立问题,即可求出实数的取值范围.
解:(1)根据题目给出的“不动点”的定义,可知:
当时,,
得,所以,所以,
所以函数的不动点为0.
(2)根据已知,得在区间上无解,
所以在上无解,
令,,所以,
即在区间上无解,
所以在区间上无解,
设,所以在区间上单调递增,
故,
所以或,所以或,
又因为在区间上恒成立,
所以在区间上恒成立,
设,所以在区间上单调递增,
故,所以,所以.
综上,实数的取值范围是.
【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:
分数不少于120分 | 分数不足120分 | 合计 | |
线上学习时间不少于5小时 | 4 | 19 | |
线上学习时间不足5小时 | |||
合计 | 45 |
(1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;
(2)①按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);
②若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.
(下面的临界值表供参考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式其中)
【题目】追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如表:
AQI | ||||||
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 重度污染 |
天数 | 6 | 14 | 18 | 27 | 25 | 10 |
(1)从空气质量指数属于[0,50],(50,100]的天数中任取3天,求这3天中空气质量至少有2天为优的概率;
(2)已知某企业每天因空气质量造成的经济损失y(单位:元)与空气质量指数x的关系式为,假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为.9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.
(i)记该企业9月每天因空气质量造成的经济损失为X元,求X的分布列;
(ii)试问该企业7月、8月、9月这三个月因气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.