题目内容
【题目】如图所示,在棱长为2的正方体中,的中点是P,过点作与截面平行的截面,则截面的面积为__________.
【答案】
【解析】
试题取AB、C1D1的中点M、N,连结A1M、MC、CN、NA1.由已知得四边形A1MCN是平行四边形,连结MN,作A1H⊥MN于H,由题意能求出截面的面积.
解:取AB、C1D1的中点M、N,连结A1M、MC、CN、NA1.
由于A1N∥PC1∥MC且A1N=PC1=MC,
∴四边形A1MCN是平行四边形.
又∵A1N∥PC1,A1M∥BP,A1N∩A1M=A1,
PC1∩BP=P,
∴平面A1MCN∥平面PBC1
因此,过A1点作与截面PBC1平行的截面是平行四边形.
又连结MN,作A1H⊥MN于H,由于A1M=A1N=,MN=2,
则AH=.
∴=,
故=2=2.
故答案为.
【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:
分数不少于120分 | 分数不足120分 | 合计 | |
线上学习时间不少于5小时 | 4 | 19 | |
线上学习时间不足5小时 | |||
合计 | 45 |
(1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;
(2)①按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);
②若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.
(下面的临界值表供参考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式其中)