题目内容
如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“C1—C2型点”.
(1)在正确证明的左焦点是“C1—C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线与有公共点,求证,进而证明原点不是“C1—C2型点”;
(3)求证:圆内的点都不是“C1—C2型点”.
(1) C1的左焦点为“C1-C2型点”,且直线可以为;
(2)直线至多与曲线C1和C2中的一条有交点,即原点不是“C1-C2型点”.
(3)直线若与圆内有交点,则不可能同时与曲线C1和C2有交点,
即圆内的点都不是“C1-C2型点”.
解析试题分析:
思路分析:(1)紧扣“C1-C2型点”的定义,确定C1的左焦点为“C1-C2型点”,且直线可以为;
(2)通过研究直线与C2有交点的条件,分别得到和 ,不可能同时成立,得到结论:直线至多与曲线C1和C2中的一条有交点,即原点不是“C1-C2型点”.
(3)显然过圆内一点的直线若与曲线C1有交点,则斜率必存在;
根据对称性,不妨设直线斜率存在且与曲线C2交于点,则
根据直线与圆内部有交点,得到
化简得,............①
再根据直线与曲线C1有交点, 由方程组
化简得,.....②
由①②得,
但此时,因为,即①式不成立;
当时,①式也不成立 ,得出结论。
解:(1)C1的左焦点为,过F的直线与C1交于,与C2交于,故C1的左焦点为“C1-C2型点”,且直线可以为;
(2)直线与C2有交点,
则,若方程组有解,则必须;
直线与C2有交点,则
,若方程组有解,则必须
故直线至多与曲线C1和C2中的一条有交点,即原点不是“C1-C2型点”.
(3)显然过圆内一点的直线若与曲线C1有交点,则斜率必存在;
根据对称性,不妨设直线斜率存在且与曲线C2交于点,则
直线与圆内部有交点,故
化简得,............①
若直线与曲线C1有交点,则
化简得,.....②
由①②得,
但此时,因为,即①式不成立;
当时,①式也不成立
综上,直线若与圆内有交点,则不可能同时与曲线C1和C2有交点,
即圆内的点都不是“C1-C2型点”.
考点:新定义问题,直线与圆的位置关系,直线与双曲线的位置关系,一元二次不等式的解法。
点评:难题,本题综合性较强,综合考查直线与圆、双曲线的位置关系以及不等式问题。从思路方面讲,要紧扣“C1-C2型点”的定义,研究方程组解的情况。