题目内容
设M=,N=,试求曲线y=sinx在矩阵MN变换下的曲线方程.
y=2sin2x
解析
已知直线l:ax+y=1在矩阵A=对应的变换作用下变为直线l′:x+by=1.(1)求实数a、b的值;(2)若点P(x0,y0)在直线l上,且A=,求点P的坐标.
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=和e2=.(1)求矩阵A.(2)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
已知矩阵,,计算.
在平面直角坐标系中,直线在矩阵对应的变换作用下得到直线,求实数、的值.
(12分)求满足的复数z。
设矩阵M=(其中a>0,b>0).(1)若a=2,b=3,求矩阵M的逆矩阵M-1;(2)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:+y2=1,求a、b的值.
点(-1,k)在伸压变换矩阵之下的对应点的坐标为(-2,-4),求m、k的值.
已知曲线C1:x2+y2=1,对它先作矩阵A=对应的变换,再作矩阵B=对应的变换得到曲线C2:+y2=1,求实数b的值.