题目内容
【题目】已知命题R,p:x∈R使 ,命题q:x∈R都有x2+x+1>0,给出下列结论:
①命题“p∧q”是真命题
②命题“命题“p∨q”是假命题
③命题“p∨q”是真命题
④命题“p∨q”是假命题
其中正确的是( )
A.②④
B.②③
C.③④
D.①②③
【答案】B
【解析】解:∵p:x∈R使 为假命题,命题q:x∈R都有x2+x+1>0为真命题
∴命题“p∧q”是假命题,故①错误
命题“ ”显然不一定成立,故②正确
命题“p∨q”是真命题,故③正确
命题“p∨q”是真命题,故④错误
故四个结论中,②③是正确的
故选B
【考点精析】认真审题,首先需要了解复合命题的真假(“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真).
练习册系列答案
相关题目
【题目】已知函数的定义域为[-1,5],部分对应值如下表, 的导函数的图象如图所示,下列关于的命题:
-1 | 0 | 4 | 5 | |
1 | 2 | 2 | 1 |
①函数的极大值点为0,4;
②函数在[0,2]上是减函数;
③如果当时, 的最大值是2,那么t的最大值为4;
④当1<a<2时,函数有4个零点.
其中正确命题的序号是__________.