题目内容
【题目】已知f(x)=(2x﹣3)n展开式的二项式系数和为512,且(2x﹣3)n=a0+a1(x﹣1)+a2(x﹣1)2+…+an(x﹣1)n
(1)求a2的值;
(2)求a1+a2+a3+…+an的值.
【答案】
(1)解:(1)由)=(2x﹣3)n展开式的二项式系数和为512,可得2n=512,∴n=9.
∵(2x﹣3)9=[﹣1+2(x﹣1)]9=a0+a1(x﹣1)+a2(x﹣1)2+…+a9(x﹣1)9,
∴a2= (﹣1)722=﹣144.
(2)解:在(2x﹣3)9=a0+a1(x﹣1)+a2(x﹣1)2+…+a9(x﹣1)9中,令x=1,可得a0=﹣1.
再令x=2,可得a0+a1+a2+a3+…+an=1,
∴a1+a2+a3+…+an=2.
【解析】(1)利用二项式系数的性质求得n=9,再利用(2x﹣3)9=[﹣1+2(x﹣1)]9以及通项公式求得a2的值.(2)在所给的等式中,令x=1,可得a0=﹣1,再令x=2,可得a0+a1+a2+a3+…+an=1.
【题目】在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差,班主任为了了解个别学生的偏科情况,对学生数学偏差(单位:分)与物理偏差(单位:分)之间的关系进行学科偏差分析,决定从全班56位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如下:
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学偏差 | 20 | 15 | 13 | 3 | 2 | -5 | -10 | -18 |
物理偏差 | 6.5 | 3.5 | 3.5 | 1.5 | 0.5 | -0.5 | -2.5 | -3.5 |
(1)已知与之间具有线性相关关系,求关于的线性回归方程;
(2)若这次考试该班数学平均分为118分,物理平均分为90.5,试预测数学成绩126分的同学的物理成绩.
参考公式: , ,
参考数据: , .