题目内容

【题目】已知f(x)是定义在R上的偶函数,且f(x+4)=f(x﹣2).若当x∈[﹣3,0]时,f(x)=6x , 则f(919)=

【答案】6
【解析】解:由f(x+4)=f(x﹣2).则f(x+6)=f(x),
∴f(x)为周期为6的周期函数,
f(919)=f(153×6+1)=f(1),
由f(x)是定义在R上的偶函数,则f(1)=f(﹣1),
当x∈[﹣3,0]时,f(x)=6x
f(﹣1)=6﹣(﹣1=6,
∴f(919)=6,
故答案为:6.
由题意可知:(x+6)=f(x),函数的周期性可知:f(x)周期为6,则f(919)=f(153×6+1)=f(1),由f(x)为偶函数,则f(1)=f(﹣1),即可求得答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网