题目内容
【题目】如图, 是平面四边形的对角线, , ,且.现在沿所在的直线把折起来,使平面平面,如图.
(1)求证: 平面;
(2)求点到平面的距离.
【答案】(1)见解析;(2).
【解析】试题分析:(1)由平面平面,平面 平面,且平面,且,根据线面垂直的判定定理可得平面;(2)取的中点,连.由,可得,又平面,所以,又 ,所以平面,因此就是点到平面的距离,在中, , ,所以.
试题解析:(1)证明:因为平面 平面
平面平面 ,
平面,且,
所以平面.
(2)取的中点,连.因为,所以,
又平面,所以,
又 ,
所以平面,
所以就是点到平面的距离,
在中, , ,所以.
所以是点到平面的距离是 .
【方法点晴】本题主要考查、线面垂直的判定定理及面面垂直的性质定理,属于中档题. 解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.
练习册系列答案
相关题目
【题目】为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:
收入x(万元) | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
支出y(万元) | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
根据上表可得回归直线方程 ,其中 , = ﹣ ,据此估计,该社区一户居民年收入为15万元家庭的年支出为万元.