题目内容

【题目】如图, 是平面四边形的对角线, ,且.现在沿所在的直线把折起来,使平面平面,如图.

(1)求证: 平面

(2)求点到平面的距离.

【答案】(1)见解析;(2).

【解析】试题分析:(1)由平面平面,平面 平面,且平面,且,根据线面垂直的判定定理可得平面;(2)取的中点,连.由,可得,又平面,所以,又 ,所以平面,因此就是点到平面的距离,在中, ,所以.

试题解析:(1)证明:因为平面 平面

平面平面

平面,且

所以平面.

(2)取的中点,连.因为,所以

平面,所以

所以平面

所以就是点到平面的距离,

中, ,所以.

所以是点到平面的距离是 .

【方法点晴】本题主要考查、线面垂直的判定定理及面面垂直的性质定理,属于中档题. 解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网