题目内容
【题目】某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
文艺节目 | 新闻节目 | 总计 | |
20至40岁 | 42 | 16 | 58 |
大于40岁 | 18 | 24 | 42 |
总计 | 60 | 40 | 100 |
(1)用分层抽样方法在收看新闻节目的观众中随机抽取5名观众,则大于40岁的观众应该抽取几名?
(2)由表中数据分析,收看新闻节目的观众是否与年龄有关?
(3)在第(1)中抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.
(提示:,其中.当时,有的把握判定两个变量有关联;当时,有的把握判定两个变量有关联;当时,有的把握判定两个变量有关联.)
【答案】(1)3人; (2)有的把握说收看新闻节目的观众与其年龄有关; (3).
【解析】
(1)先根据列联表得到收看新闻节目的观众中大于40岁的观众的频率为,从而可求得应抽取的人数.
(2)利用公式计算出后再利用预测值表中的数据可得有的把握说收看新闻节目的观众与其年龄有关.
(3)利用枚举法可得基本事件的总数和随机事件中含有的基本事件的总数,再利用古典概型的概率公式可求概率.
(1)应抽取大于40岁的观众的人数为(人).
(2)∵,
∴有的把握说收看新闻节目的观众与其年龄有关.
(3)记为“恰有1名观众的年龄为20至40岁”,
由(1)知,抽取的5名观众中,有2名观众年龄处于20至40岁,设为甲、乙;3名观众的年龄大于40岁,设为,,,则从5名观众任取2名的基本事件有:(甲,乙),(甲,),(甲,),(甲,),(乙,),(乙,),(乙,),,,共10个,其中“恰有1名观众的年龄为20至40岁”的基本事件有6个.
故.
【题目】“微信运动”是手机推出的多款健康运动软件中的一款,杨老师的微信朋友圈内有位好友参与了“微信运动”,他随机选取了位微信好友(女人,男人),统计其在某一天的走路步数.其中,女性好友的走路步数数据记录如下:
5860 8520 7326 6798 7325 8430 3216 7453 11754 9860
8753 6450 7290 4850 10223 9763 7988 9176 6421 5980
男性好友走路的步数情况可分为五个类别: 步)(说明:“”表示大于等于,小于等于.下同), 步), 步), 步), 步及以),且三种类别人数比例为,将统计结果绘制如图所示的条形图.
若某人一天的走路步数超过步被系统认定为“卫健型",否则被系统认定为“进步型”.
(1)若以杨老师选取的好友当天行走步数的频率分布来估计所有微信好友每日走路步数的概率分布,请估计杨老师的微信好友圈里参与“微信运动”的名好友中,每天走路步数在步的人数;
(2)请根据选取的样本数据完成下面的列联表并据此判断能否有以上的把握认定“认定类型”与“性别”有关?
p> | 卫健型 | 进步型 | 总计 |
男 | 20 | ||
女 | 20 | ||
总计 | 40 |
(3)若从杨老师当天选取的步数大于10000的好友中按男女比例分层选取人进行身体状况调查,然后再从这位好友中选取人进行访谈,求至少有一位女性好友的概率.
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
【题目】北京时间3月15日下午,谷歌围棋人工智能与韩国棋手李世石进行最后一轮较量, 获得本场比赛胜利,最终人机大战总比分定格.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否有的把握认为“围棋迷”与性别有关?
非围棋迷 | 围棋迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为。若每次抽取的结果是相互独立的,求的分布列,期望和方差.
附: ,其中.
0.05 | 0.01 | |
3.841 | 6.635 |