题目内容
16.已知集合A=[1,3),B={x|4<2x≤8},C={x|x2-mx+9<0}.(1)若A∪C=C,求m的取值范围;
(2)若B∩C≠∅,求m的取值范围.
分析 (1)A∪C=C,则A⊆C,可得$\left\{\begin{array}{l}{1-m+9<0}\\{9-3m+9≤0}\end{array}\right.$,即可求m的取值范围;
(2)B={x|4<2x≤8}=(2,3],利用B∩C≠∅,可得(22-2m+9)(32-3m+9)<0或$\left\{\begin{array}{l}{{m}^{2}-36≥0}\\{2<\frac{m}{2}<3}\\{4-2m+9>0}\\{9-3m+9>0}\end{array}\right.$,即可求m的取值范围.
解答 解:(1)A∪C=C,则A⊆C,∴$\left\{\begin{array}{l}{1-m+9<0}\\{9-3m+9≤0}\end{array}\right.$,∴m>10;
(2)B={x|4<2x≤8}=(2,3],
∵B∩C≠∅,
∴(22-2m+9)(32-3m+9)<0或$\left\{\begin{array}{l}{{m}^{2}-36≥0}\\{2<\frac{m}{2}<3}\\{4-2m+9>0}\\{9-3m+9>0}\end{array}\right.$,
∴6<m<$\frac{13}{2}$.
点评 本题考查集合的运算,考查解不等式,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
11.某超市统计了最近6个月某种鲜牛奶的进价x与售价y的对应数据(单位:元),如下表.
则$\overline{x}$=6,$\overline{y}$=8.
(1)x12+x22+x32+x42+x52+x62=272;
(2)x1y1+x2y2+x3y3+x4y4+x5y5+x6y6=361;
(3)线性回归方程为y=$\frac{73}{56}$x+$\frac{8}{25}$.
x | 3 | 5 | 2 | 8 | 9 | 12 |
y | 4 | 6 | 3 | 9 | 12 | 14 |
(1)x12+x22+x32+x42+x52+x62=272;
(2)x1y1+x2y2+x3y3+x4y4+x5y5+x6y6=361;
(3)线性回归方程为y=$\frac{73}{56}$x+$\frac{8}{25}$.
1.已知两个等差数列{an}和{bn}的前n项和之比为$\frac{7n+1}{4n+27}$,则$\frac{{{a_{11}}}}{{{b_{11}}}}$=( )
A. | $\frac{7}{4}$ | B. | $\frac{3}{2}$ | C. | $\frac{4}{3}$ | D. | $\frac{78}{71}$ |