题目内容

【题目】某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:

产品编号

A1

A2

A3

A4

A5

质量指标
xyz

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

产品编号

A6

A7

A8

A9

A10

质量指标
xyz

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)


(1)利用上表提供的样本数据估计该批产品的一等品率.
(2)在该样品的一等品中,随机抽取2件产品, ①用产品编号列出所有可能的结果;
②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.

【答案】
(1)解:计算10件产品的综合指标S,如下表

产品编号

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

S

4

4

6

3

4

5

4

5

3

5

其中S≤4的有A1,A2,A4,A5,A7,A9,共6件,

故该样本的一等品率P=0.6,

从而可估计该批产品的一等品率约为0.6.


(2)解:①在该样本的一等品中,随机抽取2件产品的所有可能结果为:

(A1,A2),(A1,A4),(A1,A5),(A1,A7),(A1,A9),

(A2,A4),(A2,A5),(A2,A7),(A2,A9),(A4,A5),

(A4,A7),(A4,A9),(A5,A7),(A5,A9),(A7,A9),共15种.

②在该样本的一等品中,综合指标S等于4的产品编号分别为A1,A2,A5,A7

则事件B发生的所有可能结果为:

(A1,A2),(A1,A5),(A1,A7),(A2,A5),(A2,A7),(A5,A7),共6种.

所以P(B)= =


【解析】(1)用综合指标S=x+y+z计算出10件产品的综合指标并列表表示,则样本的一等品率可求;(2)①直接用列举法列出在该样品的一等品中,随机抽取2件产品的所有等可能结果;②列出在取出的2件产品中,每件产品的综合指标S都等于4的所有情况,然后利用古典概型概率计算公式求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网