题目内容
【题目】已知无穷数列的前n项和为,记, ,…, 中奇数的个数为.
(Ⅰ)若= n,请写出数列的前5项;
(Ⅱ)求证:"为奇数, (i = 2,3,4,...)为偶数”是“数列是单调递增数列”的充分不必要条件;
(Ⅲ)若,i=1, 2, 3,…,求数列的通项公式.
【答案】(1)见解析;(2)见解析;(3) .
【解析】试题分析:(Ⅰ)代入的值,即可求得, , , , .
(Ⅱ)根据题意,先证充分性和不必要性,分别作出证明.
(Ⅲ)分当为奇数和当为偶数,两种情况进而推导数列的通项公式.
试题解析:
(Ⅰ)解: , , , , .
(Ⅱ)证明:(充分性)
因为为奇数, 为偶数,
所以,对于任意, 都为奇数.
所以.
所以数列是单调递增数列.
(不必要性)
当数列中只有是奇数,其余项都是偶数时, 为偶数, 均为奇数,
所以,数列是单调递增数列.
所以“为奇数, 为偶数”不是“数列是单调递增数列”的必要条件;
综上所述,“为奇数, 为偶数”是“数列是单调递增数列” 的充分不必要条件.
(Ⅲ)解:(1)当为奇数时,
如果为偶数,
若为奇数,则为奇数,所以为偶数,与矛盾;
若为偶数,则为偶数,所以为奇数,与矛盾.
所以当为奇数时, 不能为偶数.
(2)当为偶数时,
如果为奇数,
若为奇数,则为偶数,所以为偶数,与矛盾;
若为偶数,则为奇数,所以为奇数,与矛盾.
所以当为偶数时, 不能为奇数.
综上可得与同奇偶.
所以为偶数.
因为为偶数,所以为偶数.
因为为偶数,且,所以.
因为,且,所以.
以此类推,可得.
练习册系列答案
相关题目