题目内容
设二次函数
满足:(1)
的解集是(0,1);(2)对任意
都有
成立。数列![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232216331341487.png)
(I)求
的值;
(II)求
的解析式;
(III)求证:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232216332431428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221632962447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633056537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633071433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633118884.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232216331341487.png)
(I)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633196427.png)
(II)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221632962447.png)
(III)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232216332431428.png)
(Ⅰ)
(Ⅱ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633290669.png)
(Ⅲ)见解析
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633274535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633290669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633305169.png)
本试题主要是考查了数列的通项公式和二次函数的综合运用。
(1)中由题可知:
∴ ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633274535.png)
(2)中根据设
∵
的解集为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633664602.png)
得到参数a,的值。
(3)利用数列的关系式![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232216337581306.png)
化简变形的得到
是等比数列.,然后借助于数列的定义和放缩法得到证明
解: (Ⅰ)由题可知:
∴
……2分
(Ⅱ)设
∵
的解集为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633664602.png)
∴
且
∴
且
∴ ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634288657.png)
又
代入
得
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634366395.png)
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633290669.png)
……6分
(Ⅲ)
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634507729.png)
∵
∴
∴
是等比数列.
∴
∴
∴ ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634647795.png)
∴ ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634678617.png)
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232216347251264.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634741868.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634772836.png)
∴ 原不等式成立
(1)中由题可知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633337620.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633274535.png)
(2)中根据设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633555942.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633649548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633664602.png)
得到参数a,的值。
(3)利用数列的关系式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232216337581306.png)
化简变形的得到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633773728.png)
解: (Ⅰ)由题可知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633337620.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633274535.png)
(Ⅱ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633555942.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633649548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633664602.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634195467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634210448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634226399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634241338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634288657.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633274535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634288657.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634351426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634366395.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633290669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633305169.png)
(Ⅲ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232216344911381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634507729.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634538635.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634553838.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221633773728.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232216346001193.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634616787.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634647795.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634663996.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634678617.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232216347251264.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634741868.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634772836.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221634912548.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目