题目内容
已知函数在及处取得极值.
(1)求、的值;(2)求的单调区间.
(1)、
(2)的单调增区间为和,的单调减区间为.
解析试题分析:(1)由已知
因为在及处取得极值,所以1和2是方程的两根
故、
(2)由(1)可得
当或时,,是增加的;
当时,,是减少的。
所以,的单调增区间为和,的单调减区间为.
考点:应用导数研究函数的单调性、极值。
点评:中档题,本题属于导数的基本应用问题。在给定区间,导函数值非负,函数为增函数;导函数值非正,函数为减函数。
练习册系列答案
相关题目