题目内容
2.设集合A={(x,y)|x∈R,y∈R},在A上定义一个运算,记为⊙,对于A中任意两个元素α=(a,b),β=(c,d),规定:α⊙β=($|\begin{array}{l}{a}&{-c}\\{b}&{d}\end{array}|,|\begin{array}{l}{d}&{a}\\{c}&{b}\end{array}|$)同时定义一种运算,$|\begin{array}{l}{a}&{c}\\{d}&{b}\end{array}|$=ab-cd,若I∈A且对任意α∈A,都有α⊙I=I⊙α=α成立,则I=(0,0)或(0,1).分析 假设存在,根据新定义,得到关于I(x,y)的一个方程组,解得即可.
解答 解:设A中的元素I=(x,y),对?α∈A,都有α⊙I=I⊙α=α成立,
只需I⊙a=a,即(x,y)⊙(a,b)=(a,b)?(bx+ay,by-ax)=(a,b)
①若a=(0,0),显然有I⊙α=α成立,
②若a≠(0,0),则$\left\{\begin{array}{l}{bx+ay=a}\\{-ax+by=b}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,
∴当对?α∈A,都有α⊙I=I⊙α=α成立时,得I=(0,0)或I=(0,1),
易验证当I=(0,0)或I=(0,1)时,有对?α∈A,都有α⊙I=I⊙α=α成立
∴I=(0,0)或I=(0,1).
故答案为:(0,0)或(0,1).
点评 这是一道新运算类的题目,其特点一般是“新”而不“难”,处理的方法一般为:根据新运算的定义,将已知中的数据代入进行运算,易得最终结果.
练习册系列答案
相关题目
14.已知定义域为R的函数g(x),当x∈(-1,1]时,g(x)=$\left\{\begin{array}{l}{\frac{1}{x+1}-1,-1<x≤0}\\{{x}^{2}-3x+2,0<x≤1}\end{array}\right.$,且g(x+2)=g(x)对?x∈R恒成立,若函数f(x)=g(x)-m(x+1)在区间[-1,5]内有6个零点,则实数m的取值范围是( )
A. | ($\frac{2}{5}$,$\frac{2}{3}$) | B. | (-∞,$\frac{2}{5}$]∪($\frac{2}{3}$,+∞) | C. | [$\frac{2}{5}$,$\frac{2}{3}$) | D. | [$\frac{2}{5}$,$\frac{2}{3}$] |