题目内容
【题目】如图,在三棱柱中,侧面为矩形,,,为棱的中点,与交于点,侧面,为的中点.
(1)证明:平面;
(2)若,求直线与平面所成角的正弦值.
【答案】(1)证明见解析;(2).
【解析】试题分析:(1)取中点为,连接,,,可证明四边形为平行四边形,进而得到线面平行;(2)建立坐标系得到直线的方向向量和面的法向量,由向量的夹角公式得到要求的线面角.
解析:
(1)取中点为,连接,,,
由,,,,
得,且,
所以四边形为平行四边形.
所以,
又因为平面,平面,所以平面.
(2)由已知.
又平面,
所以,,两两垂直.
以为坐标原点,,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,
则经计算得,,,,
因为,
所以,
所以,,
.
设平面 一个法向量为,
由
令,得.
设直线与平面所成的角为,
则.
【题目】市场份额又称市场占有率,它在很大程度上反映了企业的竞争地位和盈利能力,是企业非常重视的一个指标.近年来,服务机器人与工业机器人以迅猛的增速占领了中国机器人领域庞大的市场份额,随着“一带一路”的积极推动,包括机器人产业在内的众多行业得到了更广阔的的发展空间,某市场研究人员为了了解某机器人制造企业的经营状况,对该机器人制造企业2017年1月至6月的市场份额进行了调查,得到如下资料:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
市场份额 | 11 | 163 | 16 | 15 | 20 | 21 |
请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并预测该企业2017年7月份的市场份额.
如图是该机器人制造企业记录的2017年6月1日至6月30日之间的产品销售频数(单位:天)统计图.设销售产品数量为,经统计,当时,企业每天亏损约为200万元;
当时,企业平均每天收入约为400万元;
当时,企业平均每天收入约为700万元.
①设该企业在六月份每天收入为,求的数学期望;
②如果将频率视为概率,求该企业在未来连续三天总收入不低于1200万元的概率.
附:回归直线的方程是,其中
, ,