题目内容
【题目】设,在集合的所有元素个数为2的子集中,把每个子集的较大元素相加和记为a,较小元素之和记为b.
(1)当n=3时,求a, b的值;
(2)当n=4时,求集合的所有3个元素子集中所有元素之和;
(3)对任意的,是否为定值?若是定值,请给出证明并求出这个定值;若不是,请说明理由.
【答案】(1);(2)(3)见证明
【解析】
(1)根据题干所给的概念可得到相应的参数值;(2)含有元素1的子集有个,同理含有2,3,4的子集也有个,元素之和为;(3)根据题意分析得到a和b的表达式,再由组合数的公式得到结果.
(1)集合的所有2元子集为,,,
较大元素分别为2,3,3,所以;
较小元素分别为1,1,2,所以.
(2)含有元素1的子集有个,同理含有2,3,4的子集也有个
于是所求元素之和为
(3)是为定值,定值为
当n≥4,n∈N*,当较小元素为1时,这样的2元素集合有个,较小元素为2时,这样的2元素集合为,依次类推,较小元素为n-1的集合个数为1个,
同上,当较大元素为2时,这样的2元素集合有1个,较大元素为3的2元素集合为2个,依此类推得到较大元素为n时,集合个数为个,进而得到:
所以,.
练习册系列答案
相关题目
【题目】某车间20名工人年龄数据如下表:
年龄(岁) | 19 | 24 | 26 | 30 | 34 | 35 | 40 | 合计 |
工人数(人) | 1 | 3 | 3 | 5 | 4 | 3 | 1 | 20 |
(1)求这20名工人年龄的众数与平均数;
(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.