题目内容

【题目】,在集合的所有元素个数为2的子集中,把每个子集的较大元素相加和记为a,较小元素之和记为b.

(1)n=3,a, b的值;

(2)n=4,求集合的所有3个元素子集中所有元素之和;

(3)对任意的是否为定值?若是定值,请给出证明并求出这个定值;若不是,请说明理由.

【答案】(1)(2)(3)见证明

【解析】

1)根据题干所给的概念可得到相应的参数值;(2)含有元素1的子集有个,同理含有2,3,4的子集也有个,元素之和为;(3)根据题意分析得到ab的表达式,再由组合数的公式得到结果.

1)集合的所有2元子集为

较大元素分别为233,所以

较小元素分别为112,所以.

2)含有元素1的子集有个,同理含有2,3,4的子集也有

于是所求元素之和为

(3)是为定值,定值为

n≥4nN*,当较小元素为1时,这样的2元素集合有个,较小元素为2时,这样的2元素集合为,依次类推,较小元素为n-1的集合个数为1个,

同上,当较大元素为2时,这样的2元素集合有1个,较大元素为32元素集合为2个,依此类推得到较大元素为n时,集合个数为个,进而得到:

所以.

练习册系列答案
相关题目

【题目】山西省2021年高考将实施新的高考改革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分。根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.等级考试科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到八个分数区间,得到考生的等级成绩。举例说明1:甲同学化学学科原始分为65分,化学学科 等级的原始分分布区间为,则该同学化学学科的原始成绩属等级,而等级的转换分区间为那么,甲同学化学学科的转换分为:设甲同学化学科的转换等级分为 ,求得.四舍五入后甲同学化学学科赋分成绩为66分。举例说明2:乙同学化学学科原始分为69分,化学学科等级的原始分分布区间为则该同学化学学科的原始成绩属等级.而等级的转换分区间为这时不用公式,乙同学化学学科赋分成绩直接取下端点70分。现有复兴中学高一年级共3000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布。且等级为 所在原始分分布区间为,且等级为所在原始分分布区间为,且等级为所在原始分分布区间为

(1)若小明同学在这次考试中物理原始分为84分,小红同学在这次考试中物理原始分为72分,求小明和小红的物理学科赋分成绩;(精确到整数).

(2)若以复兴中学此次考试频率为依据,在学校随机抽取4人,记这4人中物理原始成绩在区间 的人数,求的数学期望和方差.(精确到小数点后三位数).

附:若随机变量满足正态分布,给出以下数据

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网