题目内容
设函数
(
).
(Ⅰ)求
的单调区间;
(Ⅱ)试通过研究函数
(
)的单调性证明:当
时,
;
(Ⅲ)证明:当
,且
均为正实数,
时,
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021628995791.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629011373.png)
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629011447.png)
(Ⅱ)试通过研究函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629026777.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629042393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629057546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629073813.png)
(Ⅲ)证明:当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629104577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629120623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629135684.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240216291671919.png)
(1)单调递增区间为
,单调递减区间为
;(2)证明过程详见解析;(3)证明过程详见解析.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629182423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629198515.png)
试题分析:(1)求导数,讨论真数与1的大小来判断
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629213466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629229348.png)
试题解析:(Ⅰ)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021628995791.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629260695.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629276454.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629494555.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629011447.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629525391.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629541547.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629011447.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629011447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629182423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629198515.png)
(Ⅱ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629026777.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629042393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240216296501102.png)
由(Ⅰ)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021628995791.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629681535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629697481.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629713548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629681535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629744442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629681535.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629057546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629806647.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629837891.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629853803.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629073813.png)
(Ⅲ)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629135684.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240216299151430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240216299313003.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629947852.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240216299621481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240216299781729.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021629104577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021630009973.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240216300251052.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240216300401091.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240216300562421.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240216291671919.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目