ÌâÄ¿ÄÚÈÝ
1£®ÏÂÁÐ˵·¨ÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©A£® | $\frac{y-{y}_{1}}{x-{x}_{1}}$=kΪ¹ýµãP£¨x1£¬y1£©ÇÒбÂÊΪkµÄÖ±Ïß·½³Ì | |
B£® | ¹ýyÖáÉÏÒ»µã£¨0£¬b£©µÃÖ±Ïß·½³Ì¿ÉÒÔ±íʾΪy=kx+b | |
C£® | ÈôÖ±ÏßÔÚxÖá¡¢yÖáµÄ½Ø¾à·Ö±ðΪaÓëb£¬Ôò¸ÃÖ±Ïß·½³ÌΪ$\frac{x}{a}$+$\frac{y}{b}$=1 | |
D£® | ·½³Ì£¨x2-x1£©£¨y-y1£©=£¨y2-y1£©£¨x-x1£©±íʾ¹ýÁ½µãP£¨x1£¬y1£©¡¢Q£¨x2£¬y2£©Ò»ÌõÖ±Ïß |
·ÖÎö ÀûÓÃÖ±Ïß·½³ÌµÄµãбʽ¡¢Ð±½Øʽ¡¢½Ø¾àʽ¡¢Ò»°ãʽµÄʹÓ÷¶Î§¶Ô¸÷¸öÑ¡ÏîÖð¸öÅжϼ´¿É£®
½â´ð ½â£º¶ÔÓÚA£º$\frac{y{-y}_{1}}{x{-x}_{1}}$=kΪ¹ýµãP£¨x1£¬y1£©ÇÒбÂÊΪkµÄÖ±Ïß·½³Ì£¬¹ÊAÕýÈ·£»
¶ÔÓÚB£º¾¹ý¶¨µãA£¨0£¬b£©µÄÖ±ÏßµÄбÂʲ»´æÔÚ£¬ÔòÆä·½³Ì²»ÄܱíʾΪy=kx+b£¬¹ÊB´íÎó£»
¶ÔÓÚC£ºÈôÖ±ÏßÔÚxÖá¡¢yÖáµÄ½Ø¾à·Ö±ðΪaÓëbÖеÄa£¬bΪ0£¬Ôò¸ÃÖ±Ïß·½³Ì²»ÄܱíʾΪ$\frac{x}{a}$+$\frac{y}{b}$=1£¬¹ÊC´íÎó£»
¶ÔÓÚD£º¾¹ýÈÎÒâÁ½¸ö²»Í¬µÄµãP1£¨x1£¬y1£©¡¢P2£¨x2£¬y2£©µÄÖ±Ï߶¼¿ÉÒÔÓ÷½³Ì£¨y-y1£©£¨x2-x1£©=£¨x-x1£©£¨y2-y1£©±íʾ£¬¶øP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©¿ÉÄÜÊÇͬһ¸öµã£¬¹ÊD´íÎó£»
¹ÊÑ¡£ºA£®
µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Óã¬Í»³ö¿¼²éÖ±Ïß·½³ÌµÄµãбʽ¡¢Ð±½Øʽ¡¢½Ø¾àʽ¡¢Ò»°ãʽµÄʹÓ÷¶Î§£¬¿¼²éÀí½âÓëÓ¦ÓÃÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
12£®ÒÑÖªtanx=$\frac{1}{3}$£¬Ôòsin2x=£¨¡¡¡¡£©
A£® | $\frac{\sqrt{3}}{10}$ | B£® | $\frac{\sqrt{10}}{5}$ | C£® | $\frac{3}{10}$ | D£® | $\frac{3}{5}$ |
9£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1+lnx}{x}$ÔÚÇø¼ä£¨a£¬a+$\frac{2}{3}$£©£¨a£¾0£©ÉÏ´æÔÚ¼«Öµ£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£® | £¨0£¬1£© | B£® | £¨$\frac{1}{3}$£¬1£© | C£® | £¨$\frac{1}{2}$£¬1£© | D£® | £¨$\frac{2}{3}$£¬1£© |
16£®ÒÑÖªº¯Êýf£¨x£©=ln£¨1+x2£©£¬ÔòÂú×ã²»µÈʽf£¨2x-1£©£¼f£¨3£©µÄxµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£® | £¨-¡Þ£¬2£© | B£® | £¨-2£¬2£© | C£® | £¨-1£¬2£© | D£® | £¨2£¬+¡Þ£© |
6£®Èç¹ûʵÊýx£¬yÂú×ãx2+y2=4£¬ÄÇô$\frac{y-2}{x+3}$µÄ×îСֵÊÇ£¨¡¡¡¡£©
A£® | -$\frac{12}{5}$ | B£® | -1 | C£® | -$\frac{5}{12}$ | D£® | 0 |